Acta Crystallographica Section E
Structure Reports Online
ISSN 1600-5368

Rama Sarma V. S. Gadepalli, ${ }^{\text {a }}$ John M. Rimoldi ${ }^{\text {a }}$ and Frank R. Fronczek ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Medicinal Chemistry, and Laboratory for Applied Drug Design and Synthesis, University of Mississippi, University, MS 38677, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

Correspondence e-mail: ffroncz@lsu.edu

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.038$
$w R$ factor $=0.089$
Data-to-parameter ratio $=8.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

1- β-Hydroxycorticosterone hemihydrate

The title compound, 4-pregnene-1 $\beta, 11 \beta, 21$-triol-3,20-dione hemihydrate, $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, has two independent steroid molecules and one water molecule in the asymmetric unit, and these steroid molecules have nearly identical conformations. In each, the two OH groups attached to the ring system form an intramolecular hydrogen bond, with $\mathrm{O} \cdots \mathrm{O}$ distances 2.738 (3) and 2.768 (3) A.

Comment

The C1 hydroxylation of steroids remains a rare biological event, limited largely to microbial transformations (Dodson et al. , 1962) and, to a lesser extent, liver microsomal metabolism (Ford et al., 1975). Synthetic access to C1-hydroxlated steroids and derivatives has been reported for testosterone (Sharma \& Akhila, 1991; Mann \& Pietrzak, 1989), cholesterol (Mihailovic et al., 1977) and corticosterone (Kime, 1975). Of these steroids, $1-\alpha$-hydroxycorticosterone, (II), represents a distinct C1hydroxylated steroid that exhibits biological activity, and has been identified as a major corticosteroid hormone of the elasmobranch fish (Idler \& Kane, 1980; Kime, 1977). As part of our ongoing efforts to study the production of this steroid from shark interrenal gland and to subsequently quantify blood plasma levels, we established a new and efficient fivestep synthesis of 1α-hydroxycorticosterone, (II), in addition to the title compound, 1β-hydroxycorticosterone, (I), from corticosterone. The structures of (I) and (II) were elucidated and partially confirmed by the combination of two-dimensional NMR techniques, including H-COSY, H-NOSEY, HMQC and HMBC. However, the configuration of the C1hydroxy group could not be assigned unequivocally for (I) or (II). X-ray analysis of a crystalline sample of the hemihydrate of (I) clearly demonstrates that it is the 1β epimer.

(I)

There are two independent steroid molecules and one water molecule in the asymmetric unit. Both steroid molecules exhibit intramolecular hydrogen bonding, with the OH group at C 11 as donor and that at C 1 as acceptor, as detailed in Table 1. For both A and B molecules, the ketone at C3 is involved in hydrogen bonding, but the ketone at C20 is not.

Received 4 September 2003 Accepted 15 September 2003 Online 24 September 2003

Figure 1
Numbering scheme and displacement ellipsoids at the 50% probability level for molecule A of (I).

Figure 2
The asymmetric unit, with displacement ellipsoids drawn at the 50% probability level.

The conformations of the two independent molecules are virtually identical. Their endocyclic torsion angles, given in Table 2, exhibit an r.m.s. deviation of only 1.7°, with a maximum difference of $3.8(6)^{\circ}$ for $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$. This conformation is also quite similar to that of corticosterone (Campsteyn et al., 1973), which lacks the OH group at C 1. Endocyclic torsion angles for that structure are also given in Table 2 for comparison.

Experimental

Compound (I) was synthesized from corticosterone in a five-step sequence; its synthesis will be reported in a separate communication. Analytical data: m.p. $473-475 \mathrm{~K}$ (acetone-hexane); $[\alpha]_{D}{ }^{25}=+136^{\circ}$ ($c=0.1, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ with $20 \mu \mathrm{D} \mathrm{D}_{2} \mathrm{O}$ for OH exchange): $\delta 5.75(s, 1 \mathrm{H}), 4.48(d, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(d d, J=18.9$, $18.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(d d, J=5.9,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(m, 2 \mathrm{H}), 2.60(m$, $1 \mathrm{H}), 2.43(t, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(d d, J=3.6,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(m$, $1 \mathrm{H}), 2.22(d d, J=2.1,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(m, 2 \mathrm{H}), 1.82(m, 2 \mathrm{H}), 1.64$ ($d d, J=3.8,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(b s, 1 \mathrm{H}), 1.45(s, 3 \mathrm{H}), 1.12(m, 2 \mathrm{H}), 1.05$ $(d d, J=4.0,11.2 \mathrm{~Hz}), 0.92(s, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $210.30,198.21,170.60,122.72,73.34,69.58,69.58,59.78,57.40,57.12$, 46.67, 45.46, 43.84, 43.59, 32.95, 32.57, 32.27, 25.12, 22.77, 15.49, 14.84. Analysis for dehydrated material, calculated for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{5}$: C $69.59, \mathrm{H}$ 8.34\%; found: C 69.15, H 8.28\%.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	$Z=2$
$M_{r}=371.46$	$D_{x}=1.284 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P 1$	Mo $\mathrm{K} \mathrm{\alpha}$ radiation
$a=7.781(2) \AA$	Cell parameters from 4095
$b=10.598(3) \AA$	reflections
$c=12.432(4) \AA$	$\theta=2.5-27.5^{\circ}$
$\alpha=95.131(11)^{\circ}$	$\mu=0.09 \mathrm{~mm}^{\circ}$
$\beta=107.490(12)^{\circ}$	$T=100 \mathrm{~K}$
$\gamma=97.32(2)^{\circ}$	Needle, colorless
$V=960.9(5) \AA^{3}$	$0.50 \times 0.10 \times 0.07 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
3588 reflections with $I>2 \sigma(I)$
(with an Oxford Cryosystems
Cryostream cooler)
ω scans with κ offsets
21194 measured reflections
4338 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.089$
$S=1.02$
4338 reflections
507 parameters
H atoms treated by a mixture of independent and constrained refinement
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-10 \rightarrow 9$
$k=-13 \rightarrow 13$
$l=-16 \rightarrow 16$

Table 1
Hydrogen-bonding geometry ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 A-\mathrm{H} 10 A \cdots \mathrm{O}^{2} W^{\mathrm{i}}$	$0.93(4)$	$1.84(4)$	$2.759(3)$	$174(3)$
$\mathrm{O} 3 A-\mathrm{H} 30 A \cdots \mathrm{O} 1 A$	$0.91(3)$	$1.88(3)$	$2.738(3)$	$158(3)$
$\mathrm{O} 5 A-\mathrm{H} 50 A \cdots \mathrm{O} 2 A^{\mathrm{ii}}$	$0.82(4)$	$1.89(4)$	$2.687(3)$	$163(3)$
$\mathrm{O} 1 B-\mathrm{H} 10 B \cdots \mathrm{O} 1 W^{\text {ii }}$	$1.01(4)$	$1.75(4)$	$2.760(3)$	$176(3)$
$\mathrm{O} 3 B-\mathrm{H} 30 B \cdots \mathrm{O} 1 B$	$0.79(4)$	$2.06(4)$	$2.768(3)$	$150(3)$
O5 $B-\mathrm{H} 50 B \cdots \mathrm{O} 2 B^{\text {iii }}$	$1.01(3)$	$1.67(3)$	$2.659(3)$	$166(3)$
O1 $W-\mathrm{H} 1 W \cdots \mathrm{O} 5 A^{\text {iv }}$	$0.84(4)$	$1.95(4)$	$2.733(3)$	$156(3)$
O1 $W-\mathrm{H} 2 W \cdots \mathrm{O} B$	$0.89(4)$	$1.89(4)$	$2.743(3)$	$162(3)$

Symmetry codes: (i) $1+x, y, z$; (ii) $1+x, y, 1+z$; (iii) $x, y, z-1$; (iv) $x-1, y, z-1$.

Table 2
Endocyclic torsion angles (${ }^{\circ}$) in (I) and corticosterone (Campsteyn et al., 1973).

$D-\mathrm{H} \cdots A$	Molecule A	Molecule B	Corticosterone
C1-C2-C3-C4	$42.7(3)$	$45.7(3)$	35.6
C2-C3-C4-C5	$-10.6(4)$	$-14.4(4)$	-7.6
C3-C4-C5-C10	$-7.9(4)$	$-6.7(4)$	-1.7
C4-C5-C10-C1	$-7.7(3)$	$-6.2(3)$	-18.0
C5-C10-C1-C2	$40.8(3)$	$39.4(3)$	46.1
C10-C1-C2-C3	$-58.9(3)$	$-59.4(3)$	-55.6
C10-C5-C6-C7	$-50.0(3)$	$-53.2(3)$	-55.9
C5-C6-C7-C8	$46.8(3)$	$50.4(3)$	56.6
C6-C7-C8-C9	$-52.2(3)$	$-53.5(3)$	-55.2
C7-C8-C9-C10	$61.3(2)$	$59.0(2)$	52.7
C8-C9-C10-C5	$-61.3(2)$	$-58.4(2)$	-49.0
C9-C10-C5-C6	$55.1(3)$	$55.3(3)$	50.8
C8-C9-C11-C12	$43.8(3)$	$43.3(3)$	47.6
C9-C11-C12-C13	$-49.9(3)$	$-47.8(3)$	-48.4
C11-C12-C13-C14	$56.8(2)$	$55.4(3)$	54.0
C12-C13-C14-C8	$-60.7(2)$	$-62.2(2)$	-62.3
C13-C14-C8-C9	$54.6(3)$	$58.2(2)$	61.8
C14-C8-C9-C11	$-45.1(3)$	$-47.2(3)$	-53.2
C13-C14-C15-C16	$-32.5(2)$	$-32.5(2)$	-34.2
C14-C15-C16-C17	$5.0(3)$	$5.6(2)$	9.1
C15-C16-C17-C13	$23.5(2)$	$22.8(2)$	18.5
C16-C17-C13-C14	$-42.1(2)$	$-41.5(2)$	-38.1
C17-C13-C14-C15	$46.3(2)$	$45.8(2)$	44.8

The absolute configuration could not be determined from the X-ray data but was assigned from the known configuration of steroids. Friedel pairs were averaged. H atoms on C atoms were placed in idealized positions, with $\mathrm{C}-\mathrm{H}$ bond distances $0.98-1.00 \AA$, and thereafter treated as riding, with displacement parameters assigned as $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the attached atom. A torsional parameter was refined for each methyl group. H atoms on O atoms were positioned from difference maps, and their positions were refined, with $U_{\text {iso }}=$ $1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The purchase of the diffractometer was made possible by Grant No. LEQSF(1999-2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

Campsteyn, H., Dupont, L., Dideberg, O. \& Mandel, N. (1973). Acta Cryst. B29, 1726-1728.
Dodson, R. M., Kraychy, S., Nicholson, R. T. \& Mizuba, S. (1962). J. Org. Chem. 27, 3159-3164.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ford, H. C., Wheeler, R. \& Engel, L. L. (1975). Eur. J. Biochem. 57, 9-14.
Idler, D. R. \& Kane, K. M. (1980). Gen. Comp. Endocrinol. 42, 259-266.
Kime, D. E. (1975). J. Chem. Soc. Perkin Trans. 1, pp. 2371-2374.
Kime, D. E. (1977). Gen. Comp. Endocrinol. 33, 344-351.
Mann, J. \& Pietrzak, B. (1989). Tetrahedron, 45, 1549-1552.
Mihailovic, M. Lj., Lorenc, Lj., Pavlovic, V. \& Kalvoda, J. (1977). Tetrahedron, 33, 441-444.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.

Sharma, P. K. \& Akhila, A. (1991). Indian J. Chem. Sect. B, 30, 554-556.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

